Comparing emission reductions across alternative fuels

hand adjusting button to be set to low emissions

Vehicle greenhouse gas emissions can be accounted for on a “tank-to-wheels” basis or on a “well-to-wheels” basis. The former only considers the emissions that come out of a vehicle’s tailpipe. The latter includes the emissions that were released as a result of the production, processing and distribution of the fuel. For some alternative fuels, how they are made is more important than what happens when they are burnt.

Diesel engines versus modern diesel engines

Burning one liter of diesel produces 2.62 kg of CO₂, or over 26 lbs per gallon. In addition, diesel exhaust includes nitrogen oxides, carbon monoxide, soot, and other air pollutants. All are known to be harmful to human health and have the potential to reduce air quality. Like other fossil fuels, diesel is part of the man-made climate change problem. 

Diesel will never be a truly low carbon fuel, but diesel vehicles have come a long way from where they were thirty years ago. Modern diesel engines are more fuel efficient and contribute less to global warming and to air pollution than older engines. Replacing an old diesel engine with a newer model has a positive impact on the environment. Modern engines also come with sophisticated aftertreatment systems that thoroughly scrub their exhaust from pollutants such as NOx and particulate matter. Diesel particulate filters (DPF), for example, are designed to remove soot from the exhaust of diesel engines. There are opportunities to lower engine emissions through a combination of the use of alternative fuels and advanced engine technologies. Companies are using alternative fuels and advanced engine technologies to decarbonize their buildings and industrial mobility. There are already real-life examples that demonstrate the success of this approach.

Renewable diesel, a carbon-neutral fuel

Hydrotreated vegetable oil (HVO), or ‘renewable diesel’ is a renewable fuel made from crops such as soy and rapeseed, and from animal fats. HVO is said to be a CO₂-neutral fuel, as the CO₂ that the plant HVO is made from captures, is released back into the atmosphere when HVO is burned. After factoring in the emissions associated with the processing, transportation and distribution of HVO, well-to-wheels emissions are about 70% lower than diesel. Similarly, particulate matter (PM) emissions of HVO are typically lower than traditional diesel too. Meanwhile, emissions of criteria pollutants, such as NOx, are comparable to those of diesel.

Biodiesel usage emits less greenhouse gas (GHG) emissions

Biodiesel, like HVO, is manufactured from plants and other organic matter and is therefore a low carbon intensity fuel. Biodiesel is primarily used in diesel blends. For example, B20 blends, which contain 20% of biodiesel, result in roughly 20% less well-to-wheel GHG emissions than pure diesel. Using biodiesel and HVO in different blends provides users a great deal of flexibility in dialing up or down CO₂ emissions based on their objectives and on their budget.

Natural gas emissions compared to diesel emissions

Natural gas is a fossil fuel and its use results in greenhouse gas emissions. The well-to-wheels emissions of a natural gas vehicle, expressed in pounds per mile driven, are equivalent or slightly smaller than the emissions of a comparable diesel vehicle. Crucially, natural gas vehicles tend to have extremely low emissions of criteria pollutant such as NOx and particulate matter. This is one of the reasons why natural gas is a popular choice for heavy-duty vehicles that operate in urban environments such as garbage trucks, buses, and delivery trucks.

Renewable natural gas, another example of a carbon-neutral fuel

Chemically, renewable natural gas (RNG) and natural gas are identical. RNG, however, comes from the fermentation of organic matter. As a result, it is a CO₂-neutral fuel-just like HVO and biodiesel. Sometimes, RNG can qualify as a CO₂-negative fuel. One example is RNG obtained from landfills. Landfills tend to release methane, a potent greenhouse gas, due to naturally occurring fermentation. Recovering that methane and using it as a fuel prevents it from being released into the atmosphere. This means that the use of that fuel results in a reduction of greenhouse gas emissions.

Green hydrogen releases very small amounts of well-to-wheels emissions

Though all hydrogen molecules are identical, hydrogen is said to come in a variety of colors. Green hydrogen is made by electrolysis using renewable electricity. (The hydrogen palette also includes gray hydrogen, blue hydrogen and turquoise hydrogen, among others). Those colors refer to production pathways with intermediate decarbonization outcomes. When green hydrogen is used in a fuel cell vehicle, the only exhaust is water vapor. When it is used in an internal combustion engine vehicle, some NOx emissions also occur (and trace amounts of CO₂, resulting from engine oil burning). In both cases, well-to-wheels emissions are extremely small.

Hydrogen and natural gas blends – the impact of proportions on emissions

Blending green hydrogen into a natural gas pipeline is sometimes seen as a solution to the problem of transporting the hydrogen from its production site to consumers. Blending hydrogen into a natural gas pipeline can reduce carbon emissions. It has a similar effect as blending renewable natural as - the greater the content of the renewable fuel, the greater the reduction. High proportions of hydrogen can, however, affect end users whose equipment is not necessarily tuned for hydrogen blends. This can result in the equipment to underperform and derate, or to get damaged.

Methanol – is it a carbon-neutral fuel?

One way to produce renewable methanol is to combine green hydrogen and CO₂ captured from other sources. Methanol can also be obtained from the fermentation of organic matter-similar to the way that ethanol, or alcohol, results from the fermentation of sugars. When methanol is burned in an engine, the CO₂ originating from its production source is returned to the atmosphere. The result is thus CO₂-neutral. Engines that run on methanol release virtually no soot, no sulfur oxides, and when combined with the right technology, relatively small quantities of NOx. 

Ammonia burns CO₂-free

Ammonia is another energy carrier derived from hydrogen. Unlike methanol, ammonia molecules contain no carbon atoms and thus burn entirely CO₂-free. Ammonia is currently used in industrial processes like fertilizer or explosive manufacturing. There is also potential for ammonia to be used as shipping fuel. Its use in a marine engine would release no soot and CO₂, and the NOx released can be mitigated with aftertreatment.

Emissions are a key criterion to consider when choosing the right alternative fuel, but other advantages and disadvantages of alternative fuels should be taken into account. It is also important to note that the state of adoption among the alternative fuels can vary.

Cummins Office Building

Cummins Inc.

Cummins, a global power technology leader, is a corporation of complementary business segments that design, manufacture, distribute and service a broad portfolio of power solutions. The company's products range from internal combustion, electric and hybrid integrated power solutions and components including filtration, aftertreatment, turbochargers, fuel systems, controls systems, air handling systems, automated transmissions, electric power generation systems, microgrid controls, batteries, electrolyzers and fuel cell products.

STEM Project Unites Children in the UK and Uzbekistan

Zoom call with West Park School and the Children's Home

If you ever doubted the ability of young minds to grasp what many adults would consider complex concepts, then you'll be amazed by the achievements of two groups of young children - one in a school in northern England, and the other 4,000 miles away in an orphanage in Uzbekistan.

With the support of Cummins, children ranging from six to twelve years of age have managed to bridge the language, culture, and time divide. They are collaborating with great success on building a basic electric racing car.

The story begins with a visit by Cummins to Rudmash Export Service, which has been representing Cummins in Tashkent, the capital of Uzbekistan, since 2018.

Rudmash has an impressive list of clients in mining, construction, gas, and power generation.

It is also a highly respected supporter of community initiatives, a key focus for Cummins.

During the visit, Amit Kumar, Cummins' Technical Territory Manager for the Commonwealth of Independent States (CIS) region, mentioned the work he was doing with local schools involving the Greenpower Education Trust in the UK.

Amit suggested that Rudmash might consider introducing local children to the fantastic learning opportunity that comes from building an electric car.

The Rudmash executive team loved the idea and reached out to their friends at the local orphanage (Children’s Home 22), about the proposed connection with children from West Park Academy – a primary school near Cummins' manufacturing plant in Darlington, England.

Students at the Children's Home working on the car
The children from Children's Home 22 building the car

Speaking through a translator, Rudmash Sales Manager Mr. Mavlonberdi Akhmedov said there was no hesitation from the orphanage. "Everyone was excited about it," he said. "When we showed them pictures of the car, the children's eyes lit up with interest.

"The only issue we encountered was not being able to involve the older children, but I think Amit has something in his mind for them. It will involve a similar collaboration with a UK school on a larger electric car that they can fit in!"

Over in Darlington, teacher Mr. David Fraser and his group of 9 to 11-year-olds were thrilled at the prospect of working with children from another country.

Students from West Park Academy
The children from West Park Academy

"Before our first session, I showed the children a map of Uzbekistan and explained how the time zones worked," Mr. Fraser said. "Tashkent is four hours ahead of us."

"When they started hearing a different language, they were a little hesitant although still excited. However, towards the end, once they got used to the translation pauses, lots of questions were being asked."

"They adapted very quickly, and every session with the orphanage has become more engaging. The children have greatly benefited from the relationship. It's been a great learning experience."

The car involved in the project is called the Greenpower Goblin G2. It comes as a flat-pack kit including chassis, wheels, steering, disc brakes, a 24V electric motor, and two 12V batteries.

Students at West Park Academy working on the car
The children from West Park Academy building the car

"The project is all about inspiring young children to take an interest in engineering in a fun and innovative way," said Amit Kumar, who earlier this year received special recognition at the North-East England STEM (Science, Technology, Engineering, and Mathematics) Awards for his years of dedication to STEM Education.

"The build introduces children to basic mechanics and electronics and might be the first step on the pathway to a career in engineering or another STEM field.

Mr. Fraser said the children soon started discussing aspects of the car such as frames, brakes, and steering geometry. There was a lively question-and-answer session on different materials that could be used to design and make the car's body. Their last session was about controls and driving.

"There are also other general discussions, as the children are eager to learn more about each other's countries," said Amit, who leads the sessions.

Students at the Children's Home looking at the car drawing
The children from Children's Home 22 talking about a drawing while on a zoom call

Rudmash service engineer Mr. Abdullayev Shakhzod said the children were enjoying the experience of working in teams.

"It's a fantastic new chapter in the history of a place that has a storied past. It was established in 1942 during the Second World War to care for evacuees from all over Eastern Europe. Children of over 40 different nationalities have been cared for by this children's home.

"The home is named Antonina Pavlovna Khlebushkina after the woman who ran it in the early days. She would be so proud of what is happening there today.

"As the summer vacation times differ in the two countries, the West Park school children have already finished building their cars, while the Uzbekistan car is about 40% complete.

"When the children return from their summer camp in September, they will start the rear axle, motor, and electrical components. Then they can take it for a drive," Amit said.

"Just before their summer term ended, the West Park children conducted a demonstration for their new friends in Tashkent. They set up a track and showcased driving the car on it. It was a great success."

Mr. Akhmedov, speaking through a translator, mentioned that the management team at Rudmash was considering how the project could expand beyond the children's home and into schools and youth organizations throughout Uzbekistan.

Mr. Akhmedov praised Cummins for their support of the project. "They have shown great responsibility at every stage and been very proactive, always striving to ensure things are done right.

"This is just the beginning for these children. It's already motivating them to learn more and develop their skills in broader technical applications.

"I would say that this project is not only important for the children's home but also for our city of Tashkent and the Republic of Uzbekistan, as it is nurturing an educational culture that is highly valuable. I can't thank Amit and Cummins enough."

Amit expressed that it's a privilege to help Cummins inspire young people about engineering and science from an early age.

How is the United States investing in clean energy?

GR hero

Our planet is facing a dire crisis: carbon dioxide concentrations in the atmosphere continue to soar above record highs. If gone unaddressed, the collective stress of climate change will produce an irreparable impact. Our health, energy, water, and food ecosystems are at risk. 

As it stands, there are many long-term effects of climate change. In North America, climate change is forecasted to cause decreasing snowpack in the western mountains. It will also lead to a 5–20% increase in yields of rain-fed agriculture and great intensity of heat waves. In fact, over the last five years, the United States has incurred roughly $120 billion a year in damages as a result of natural disasters caused by extreme weather and climate events.

Beyond natural catastrophes, climatic risks to the United States will have a cascading effect on the country's interconnected ecosystems. Reduced labor and overall economic productivity, and altered crop yields, will disproportionately harm lower-income and marginalized populations. These groups lack the resources to prepare or cope with extreme weather and climate events.

The world is investing in clean energy innovation

Combating the intensifying climate crisis requires a strategic combination of research and development (R&D), innovation, technology — and bold attempts.

Around the globe, countries are investing in clean energy to contribute to a livable planet now and for generations to come. In 2022, the US passed the Inflation Reduction Act, which includes a historic $370 billion investment to address the climate crisis. The Inflation Reduction Act provides tax credits and incentives to power homes, businesses, and communities with clean energy by 2030. The Act will increase investments in the fastest-growing power generation technologies, solar and wind. It will also advance cost-saving clean energy projects and protect two million acres of national forests. These initiatives are in addition to substantial tax credits and rebates offered to families and businesses in the United States.
Consequently, a stronger clean energy economy will contribute to overall economic growth and competition. As a result, there will be millions of new well-paying jobs for Americans to make clean energy.

It is possible to start decarbonizing now

Governmental policy strategies and investments in decarbonization technologies are part of the solution to produce increasingly cheap, dependable, and clean energy.

Strong communities and vibrant economies depend on a healthier planet. As a global power technology leader, Cummins is in a unique position to power customer success by leading during this energy transition. We intent to do so by providing customers with the right technology at the right time, understanding of their needs and applications.

We think of this journey to carbon neutrality in two distinct and complementary ways. First, by innovating zero-emission solutions and introducing them in markets and applications where the infrastructure, development and deployment are ready. Secondly, by advancing internal combustion engines through efficiency improvement and by running them on cleaner alternative fuels for a well-to-wheels solution.

Through Destination Zero, we are advancing low- and no-carbon platforms. This includes diesel and natural gas engines, hybrid, and electric platforms, as well as powertrain components, controls, and related technologies.

Join Cummins in powering a better tomorrow

Cummins environmental sustainability strategy includes goals timed for 2030. Progress toward the reduction of carbon emissions from company plants and facilities — in addition to our products — is in full swing. For more than one hundred years, we have brought technological solutions to market. As a power solutions leader, we will continue to power a more prosperous world for today and tomorrow. Are you ready to consider investing in new power solutions?

Traci Kraus headshot

Traci Kraus

Traci Kraus is a Director of Government Relations where she leads US federal advocacy for Cummins. She focuses on energy, climate, hydrogen, transportation and budget legislative and regulatory issues. 

Prior to joining Cummins, Traci worked for former U.S. Senator Russ Feingold.  She has a Master's in Public Administration from the George Washington University and B.A.s in Government and Politics and Communication from the University of Maryland in College Park. She is originally from Chicago, and now lives outside of Washington, D.C. with her husband, Aaron and two children Liam (8) and Sloane (5).

Redirigir a
cummins.com

La información que busca está en
cummins.com

Estamos lanzando ese sitio para usted ahora.

Gracias.