What are power-to-x and e-fuels?

A windfarm across a mountainous landscape

As more businesses focus on reducing their environmental footprint, the interest in alternative fuels, power-to-x, and e-fuels continues to rise. Today, many varieties of e-fuels are used in power generation applications and beyond. 

Let’s start with basics around power-to-x and e-fuels. 

What is power-to-x?

"Power-to-x" refers to a series of techniques and pathways allowing to convert, store and utilize renewable electrical energy. Power-to-x is specifically applicable when there is an excess of renewable electricity produced from solar or wind resources. Rather than be wasted-the specific industry term for this is "curtailed"-the excess electricity is used productively. The "x" can refer to a variety of energy carriers or uses. Power-to-hydrogen is the generation of hydrogen using renewable electricity. Power-to-power refers to storing electricity in batteries. Power-to-heat consists of using electricity to heat a home or a business, typically coupled with a heat accumulator. The meaning of power-to-methane should be easy to guess.

What are e-fuels?

E-fuels are fuels that are synthetized using renewable electricity, often using inorganic feedstock. They're the "x" of power-to-x when "x" is a fuel. E-fuels include liquid and gaseous hydrocarbons such as methane and various gasoline-like, diesel-like fuels, alcohols such as ethanol and methanol, and non-carbon fuels such as hydrogen and ammonia. 

Green hydrogen is combined with CO2 from a power plant to produce e-methane. The e-methane is then piped to consumers.
Green hydrogen is combined with CO2 from a power plant to produce e-methane. The e-methane is then piped to consumers.

Why do we need e-fuels and power-to-x?

Power-to-x system allow to decouple electricity generation and electricity demand. At each instant, the total amount of electricity generated on an electricity grid must precisely match the total amount of electricity used by consumers. In other words, generation and demand are normally closely coupled. If generation is unable to keep up with demand, for example if too many power-plants trip at the same time, the electric grid can quickly collapse. Counterintuitively, the same is true if generation exceeds demand. When large quantities of variable renewable energy resources such as wind and solar are online, renewable generation can rapidly exceed demand. When this occurs, renewable resources get curtailed to avoid collapsing the system. 

In some markets, the spot price of electricity can, as a result, become negative when renewable generation is high. This means that market participants get paid to use more electricity. 

Power-to-x projects take advantage of excess and off-peak renewable power to produce something useful. It's a win-win situation-power-to-x producers can buy cheap renewable CO2-free electricity and solar and wind farms get to sell electricity that would otherwise have been lost. 

E-fuels produced at a power-to-x project can be used hours, weeks or months later to produce electricity. 

E-hydrogen, for example, can be used in a business equipped with a fuel cell and solar panels to make electricity during the evening and night. Business can use this setup to reduce demand fees charged by the electric utility to consumers with a high peak demand. 

At the grid level, e-hydrogen can be stored seasonally. The city of Los Angeles, California (U.S.) for example, is sponsoring a large power-to-hydrogen-to-power project in Utah. The project will create hydrogen using electricity from nearby wind and solar resources. During summer, the hydrogen will be stored underground in a geological formation. During winter, the hydrogen will be used to generate electricity, which will then be transported directly to Los Angeles via an existing high voltage transmission line.

For electricity consumers, e-hydrogen are a way to reduce their carbon footprint beyond what can be achieved with solar arrays and wind turbines alone. For utility companies and grid system operators, e-hydrogen is especially valuable, because it is one of the few CO2-free ways to balance out intermittent variable renewable energy resources.

The benefits of using e-fuels are not limited to the power generation application. They can be used in vehicles and other industrial sectors to great advantage. Forklifts running on e-hydrogen are one e-fuel application that has become popular in the logistics sector, and e-hydrogen forklifts check several boxes. They have little downtime. They don't generate any fumes or exhaust, and in an enclosed environment like a warehouse, this feature is important. And, they're CO2-free.

Beyond e-hydrogen, liquid e-fuels have a different process to be produced, which is more complicated. These liquid e-fuels are especially useful to power up heavy-duty applications such as marine applications. 

For applications where hydrogen is not a practical option, several alternative e-fuels can be synthesized using hydrogen. Here are some of the main ones:

What is e-methanol?

Methanol is a commodity product used on a large scale in the chemical industry to produce a variety of substances. Methanol is sometimes known as wood alcohol, and has long been used as a fuel in specialty vehicles such as RC aircraft, dirt bikes, and, yes, monster trucks. Several processes have been developed to synthesize methanol using CO2, hydrogen, and renewable electricity. Their product is a clean, carbon-neutral energy carrier—e-methanol. There is growing interest in using methanol as a marine fuel. Methanol and e-methanol could help tugboats, fishing boats, ferries and other vessels using specially modified engines to meet increasingly strict regulations limiting emissions of NOx and sulfur in densely populated coastal areas, and, in the case of e-methanol, also decrease their carbon footprint.

What is e-methane?

Methane, the main constituent of natural gas, is a widely used fossil fuel. In the United States, methane is the number one energy source used in power generation. Methane and natural gas are also increasingly popular fuels for motor vehicles. A power-to-methane system combines an e-hydrogen production process with CO2 to produce carbon-neutral e-methane. Several e-methane production processes are being developed and industrialized. Outside of power generation, the mining sector has shown a great deal of interest in these processes. For mines located in remote areas, the cost of trucking in gasoline or diesel can be prohibitively high. These mines can potentially save a lot of money by fueling their heavy hauler trucks with e-methane on-site, using renewable electricity generated locally.

What is e-diesel?

Companies and research institutions around the world are developing processes to mass produce liquid hydrocarbons from CO2, and water using e-hydrogen. The production of synthetic gasoline, jet fuel and diesel is envisioned. One advantage of these e-fuels is they can be used as a drop-in fuel in standard engines, making CO2-neutral operation possible without needing any modification to the vehicles or fueling infrastructure. 

What is e-ammonia?

Ammonia is another very common chemical. The fertilizer industry uses it in vast quantities, and it has seen occasional use as a fuel in specific situations. Belgium, for example, converted city buses to run on ammonia during World War II (the buses were scrapped as soon as fossil fuels became available again). 

In the 1960s NASA flew the X-15 rocket-powered aircraft using ammonia as fuel. Producing ammonia from hydrogen is a well-established process. Ammonia, or e-ammonia, could thus be produced industrially without any CO2 emissions in a power-to-hydrogen-to-ammonia system. E-ammonia is seen as a potential alternative to hydrogen, being easier to store and transport. Like hydrogen, ammonia can be used in specially designed fuel cells, internal combustion engines and gas turbines without releasing any emissions.

E-fuels show promise, but all must still overcome challenges preventing their widespread adoption. In almost all cases, production costs are the main issue. Outside of certain specific use cases, there are often other low CO2 alternatives available that e-fuels must compete with. Biofuels and electric batteries have a head start in that regard, having been on the market longer. 

Infrastructure costs are another challenge, particularly in the case of the non-hydrocarbon e-fuels. Fewer ships can adopt methanol if methanol is not widely available at ports. Costs, however, will come down as e-fuel technology matures and production scales increase. To make a parallel, the cost of lithium-ion batteries (the type used in electric vehicles and most stationary energy storage) has fallen by 98% in the past 30 years. If e-fuels experience a fraction of that progression, it will not be long before you can find them at your local gas station.

In addition to e-fuels, don’t forget to check out what the low-carbon fuels are, and the benefits of alternative fuels and fuel-flexibility.

Power-to-x, e-fuels, and your business

You are likely already centering your frame of thinking on the needs of your business, and asking yourself how these different alternative fuels can play a role to fulfill your needs.

In addition to the fuel itself, consider taking local availability, regulations, and your use case into account too. These additional factors compliment the unique benefits each alternative fuel offers.

These additional factors are also locally driven. If you are interested in having a discussion specific to your business, we recommend you reach out to a local partner with deeper understanding of your business and needs.

Aytek Yuksel - Cummins Inc

Aytek Yuksel

Aytek Yuksel is the Content Marketing Leader for Cummins Inc., with a focus on Power Systems markets. Aytek joined the Company in 2008. Since then, he has worked in several marketing roles and now brings you the learnings from our key markets ranging from industrial to residential markets. Aytek lives in Minneapolis, Minnesota with his wife and two kids.

STEM Project Unites Children in the UK and Uzbekistan

Zoom call with West Park School and the Children's Home

If you ever doubted the ability of young minds to grasp what many adults would consider complex concepts, then you'll be amazed by the achievements of two groups of young children - one in a school in northern England, and the other 4,000 miles away in an orphanage in Uzbekistan.

With the support of Cummins, children ranging from six to twelve years of age have managed to bridge the language, culture, and time divide. They are collaborating with great success on building a basic electric racing car.

The story begins with a visit by Cummins to Rudmash Export Service, which has been representing Cummins in Tashkent, the capital of Uzbekistan, since 2018.

Rudmash has an impressive list of clients in mining, construction, gas, and power generation.

It is also a highly respected supporter of community initiatives, a key focus for Cummins.

During the visit, Amit Kumar, Cummins' Technical Territory Manager for the Commonwealth of Independent States (CIS) region, mentioned the work he was doing with local schools involving the Greenpower Education Trust in the UK.

Amit suggested that Rudmash might consider introducing local children to the fantastic learning opportunity that comes from building an electric car.

The Rudmash executive team loved the idea and reached out to their friends at the local orphanage (Children’s Home 22), about the proposed connection with children from West Park Academy – a primary school near Cummins' manufacturing plant in Darlington, England.

Students at the Children's Home working on the car
The children from Children's Home 22 building the car

Speaking through a translator, Rudmash Sales Manager Mr. Mavlonberdi Akhmedov said there was no hesitation from the orphanage. "Everyone was excited about it," he said. "When we showed them pictures of the car, the children's eyes lit up with interest.

"The only issue we encountered was not being able to involve the older children, but I think Amit has something in his mind for them. It will involve a similar collaboration with a UK school on a larger electric car that they can fit in!"

Over in Darlington, teacher Mr. David Fraser and his group of 9 to 11-year-olds were thrilled at the prospect of working with children from another country.

Students from West Park Academy
The children from West Park Academy

"Before our first session, I showed the children a map of Uzbekistan and explained how the time zones worked," Mr. Fraser said. "Tashkent is four hours ahead of us."

"When they started hearing a different language, they were a little hesitant although still excited. However, towards the end, once they got used to the translation pauses, lots of questions were being asked."

"They adapted very quickly, and every session with the orphanage has become more engaging. The children have greatly benefited from the relationship. It's been a great learning experience."

The car involved in the project is called the Greenpower Goblin G2. It comes as a flat-pack kit including chassis, wheels, steering, disc brakes, a 24V electric motor, and two 12V batteries.

Students at West Park Academy working on the car
The children from West Park Academy building the car

"The project is all about inspiring young children to take an interest in engineering in a fun and innovative way," said Amit Kumar, who earlier this year received special recognition at the North-East England STEM (Science, Technology, Engineering, and Mathematics) Awards for his years of dedication to STEM Education.

"The build introduces children to basic mechanics and electronics and might be the first step on the pathway to a career in engineering or another STEM field.

Mr. Fraser said the children soon started discussing aspects of the car such as frames, brakes, and steering geometry. There was a lively question-and-answer session on different materials that could be used to design and make the car's body. Their last session was about controls and driving.

"There are also other general discussions, as the children are eager to learn more about each other's countries," said Amit, who leads the sessions.

Students at the Children's Home looking at the car drawing
The children from Children's Home 22 talking about a drawing while on a zoom call

Rudmash service engineer Mr. Abdullayev Shakhzod said the children were enjoying the experience of working in teams.

"It's a fantastic new chapter in the history of a place that has a storied past. It was established in 1942 during the Second World War to care for evacuees from all over Eastern Europe. Children of over 40 different nationalities have been cared for by this children's home.

"The home is named Antonina Pavlovna Khlebushkina after the woman who ran it in the early days. She would be so proud of what is happening there today.

"As the summer vacation times differ in the two countries, the West Park school children have already finished building their cars, while the Uzbekistan car is about 40% complete.

"When the children return from their summer camp in September, they will start the rear axle, motor, and electrical components. Then they can take it for a drive," Amit said.

"Just before their summer term ended, the West Park children conducted a demonstration for their new friends in Tashkent. They set up a track and showcased driving the car on it. It was a great success."

Mr. Akhmedov, speaking through a translator, mentioned that the management team at Rudmash was considering how the project could expand beyond the children's home and into schools and youth organizations throughout Uzbekistan.

Mr. Akhmedov praised Cummins for their support of the project. "They have shown great responsibility at every stage and been very proactive, always striving to ensure things are done right.

"This is just the beginning for these children. It's already motivating them to learn more and develop their skills in broader technical applications.

"I would say that this project is not only important for the children's home but also for our city of Tashkent and the Republic of Uzbekistan, as it is nurturing an educational culture that is highly valuable. I can't thank Amit and Cummins enough."

Amit expressed that it's a privilege to help Cummins inspire young people about engineering and science from an early age.

How is the United States investing in clean energy?

GR hero

Our planet is facing a dire crisis: carbon dioxide concentrations in the atmosphere continue to soar above record highs. If gone unaddressed, the collective stress of climate change will produce an irreparable impact. Our health, energy, water, and food ecosystems are at risk. 

As it stands, there are many long-term effects of climate change. In North America, climate change is forecasted to cause decreasing snowpack in the western mountains. It will also lead to a 5–20% increase in yields of rain-fed agriculture and great intensity of heat waves. In fact, over the last five years, the United States has incurred roughly $120 billion a year in damages as a result of natural disasters caused by extreme weather and climate events.

Beyond natural catastrophes, climatic risks to the United States will have a cascading effect on the country's interconnected ecosystems. Reduced labor and overall economic productivity, and altered crop yields, will disproportionately harm lower-income and marginalized populations. These groups lack the resources to prepare or cope with extreme weather and climate events.

The world is investing in clean energy innovation

Combating the intensifying climate crisis requires a strategic combination of research and development (R&D), innovation, technology — and bold attempts.

Around the globe, countries are investing in clean energy to contribute to a livable planet now and for generations to come. In 2022, the US passed the Inflation Reduction Act, which includes a historic $370 billion investment to address the climate crisis. The Inflation Reduction Act provides tax credits and incentives to power homes, businesses, and communities with clean energy by 2030. The Act will increase investments in the fastest-growing power generation technologies, solar and wind. It will also advance cost-saving clean energy projects and protect two million acres of national forests. These initiatives are in addition to substantial tax credits and rebates offered to families and businesses in the United States.
Consequently, a stronger clean energy economy will contribute to overall economic growth and competition. As a result, there will be millions of new well-paying jobs for Americans to make clean energy.

It is possible to start decarbonizing now

Governmental policy strategies and investments in decarbonization technologies are part of the solution to produce increasingly cheap, dependable, and clean energy.

Strong communities and vibrant economies depend on a healthier planet. As a global power technology leader, Cummins is in a unique position to power customer success by leading during this energy transition. We intent to do so by providing customers with the right technology at the right time, understanding of their needs and applications.

We think of this journey to carbon neutrality in two distinct and complementary ways. First, by innovating zero-emission solutions and introducing them in markets and applications where the infrastructure, development and deployment are ready. Secondly, by advancing internal combustion engines through efficiency improvement and by running them on cleaner alternative fuels for a well-to-wheels solution.

Through Destination Zero, we are advancing low- and no-carbon platforms. This includes diesel and natural gas engines, hybrid, and electric platforms, as well as powertrain components, controls, and related technologies.

Join Cummins in powering a better tomorrow

Cummins environmental sustainability strategy includes goals timed for 2030. Progress toward the reduction of carbon emissions from company plants and facilities — in addition to our products — is in full swing. For more than one hundred years, we have brought technological solutions to market. As a power solutions leader, we will continue to power a more prosperous world for today and tomorrow. Are you ready to consider investing in new power solutions?

Traci Kraus headshot

Traci Kraus

Traci Kraus is a Director of Government Relations where she leads US federal advocacy for Cummins. She focuses on energy, climate, hydrogen, transportation and budget legislative and regulatory issues. 

Prior to joining Cummins, Traci worked for former U.S. Senator Russ Feingold.  She has a Master's in Public Administration from the George Washington University and B.A.s in Government and Politics and Communication from the University of Maryland in College Park. She is originally from Chicago, and now lives outside of Washington, D.C. with her husband, Aaron and two children Liam (8) and Sloane (5).

Redirigir a
cummins.com

La información que busca está en
cummins.com

Estamos lanzando ese sitio para usted ahora.

Gracias.