When to switch to natural gas engines

Red, yellow and white buses driving down a highway

Natural gas engines can be a great option for commercial vehicles. They’re quieter than diesel engines, they reduce air pollution, and they can help fleets save a lot of money on operating costs, especially when it comes to fuel. So why don’t more fleets switch to natural gas engines?  

Compressed Natural Gas, or CNG engines are a great option for a wide range of fleets and commercial vehicle applications, but not all.  

Are natural gas engines a good fit for your business or mission profile? We'll lay out some of the key benefits of natural gas engines, and some of the drawbacks, to help you decide where natural gas is a viable option for your fleet. 

Mission profile and Infrastructure while switching to natural gas engines 

Given the current state of natural gas refueling infrastructure availability, fleets seeing the most success with CNG today are those that return to base each night. These are fleets that can complete their routes on a single tank of fuel, return to base and refuel “behind the fence.” 

At the end of their shift, drivers park their vehicle in a designated space. They connect a fueling nozzle to the vehicle and go home. The next day, the tank is full. Transit buses, refuse trucks, urban delivery trucks, and regional haul semi-trucks are all good examples of vehicles that can effectively refuel at a central depot. The behind the fence refueling system works well for these applications. 

There are set-up costs associated with establishing refueling capacity onsite, but most natural gas fuel suppliers offer options to install fuel pumps with no money paid upfront. The cost is baked into the fuel contract, which can be as long as a three-year term. This provides stable fuel costs over the life of the contract and the savings are significant compared to the high cost of diesel fuel, which is much more volatile. 

For heavy, or long-haul trucks, refueling is more difficult. They rely on public refueling stations along major interstates. Currently the number of public CNG pumps is dwarfed by the number of diesel pumps, but Cummins and several transportation industry partners are making strides to change that. The company recently announced a plan to collaborate with Love's Travel Stops and Trillium to enhance low and zero carbon fuel and powertrain solutions.  

Cummins also recently announced plans to develop a 15-liter natural gas engine, the X15N, designed for class 8 long-haul applications. News of the X15N is already generating significant interest and excitement in the North American heavy-duty truck market. So much so it was named one of the Top 20 New Products of 2022 by Heavy Duty Trucking (HDT). 

These investments in new products and refueling infrastructure will make integrating natural gas vehicles easier for long-haul fleets.  

Maintenance and safety considerations for natural gas engines 

In addition to considering refueling needs, there are unique maintenance needs that should be considered.  

CNG systems have three main hazards: high pressure, fire and asphyxiation. High pressure is the primary concern because the nominal fill pressure of the CNG stored in fuel tanks is 3,600 psi. To address high-pressure concerns, non-CNG cylinder components in the high-pressure CNG fuel system are designed to withstand at least 14,400 psi without bursting, four times their rated pressure.

CNG cylinders are built to meet rigorous federal standards and are constructed from much sturdier materials than gasoline or diesel fuel storage tanks. All CNG fuel cylinders must be manufactured to withstand 2.25 times their fill pressure. This means that all CNG cylinders have a minimum burst pressure of 8,100 psi which is far above the fuel delivery pressures of CNG fueling stations. 

To prevent CNG cylinder rupture during fire or over pressurization, pressure relief devices (PRDs) are installed. These devices open at specific temperatures or pressures, releasing the cylinder's pressurized contents. Each cylinder is equipped with at least one of these mandatory safety devices—and many cylinders have two or more PRDs. 

Not every maintenance facility can be used for CNG vehicle maintenance. Facilities that support vehicles using liquid fuels incorporate several safety features that differ from the safety requirements needed to service natural gas trucks.  

For example, indoor facilities that service diesel trucks have ventilation systems designed to capture fuel vapors near ground level because liquid fuel vapors are heavier than air. The components of natural gas are lighter than air and rise to the ceiling. That means CNG maintenance facilities require sensors and ventilation systems at ceiling level to alert technicians is potentially dangerous. The shops must also be certified by a fire marshal for proper ventilation, which is uncommon when compared to other traditional shops. In addition to proper ventilation, CNG service facilities need to have methane detectors.  

It's critical that CNG vehicles are serviced according to the manufacturer's recommended maintenance intervals. This includes making sure oil changes are performed on time, using a schedule based on operating hours. It is also important to use the proper engine oil. Cummins natural gas engines use a different oil specification compared to their diesel counterparts. In 2018, Cummins announced a new oil specification - Cummins Engineering Standard (CES) 20092-that allows for longer drain intervals. 

If you're thinking about setting up a natural gas fueling point or about maintaining natural gas vehicles on your premises, it's a good idea to estimate the cost of these modifications. When they are low, the economic benefits of natural gas engine powered vehicles can surpass these switching costs. 

Role of natural gas engines in reaching environmental goals 

Switching to natural gas engines is a top choice for commercial vehicle fleets to reduce NOx, particulate matter, and VOC emissions, while also enjoying other environmental sustainability benefits.

Reducing emissions, however, does not have the same air quality benefits for every vehicle. Trucks used on lightly traveled roads in sparsely populated areas may not have a significant impact on air quality locally. They're also unlikely to cause a significant degradation. If the same truck was on drayage duty between the port of Los Angeles and logistics centers in the area, its emissions would be more likely to contribute to local air quality concerns. 

This is why companies that operate vocational vehicles in urban areas may want to consider using natural gas engines. Switching to natural gas benefits the communities in which these businesses operate. Their customers, who often belong to those communities, stand to benefit the most from better air quality. 

Regulations to consider while switching to natural gas engines 

Reducing emissions is a great way to generate goodwill among the community, but sometimes it's also a matter of compliance. In some areas, strict emission standards apply to both the sale of new vehicles and to in-use vehicles. California, for example, enforces a set of rules applicable to heavy-duty diesel vehicles.  

As a result of these rules, starting in 2023, all drayage trucks using diesel engines will require a 2010 or newer engine. For businesses replacing trucks or engines, switching to natural gas is a cost-effective way to meet emissions standards and save on fuel expenses.

Both the Environmental Protection Agency (EPA) and California Air Resources Board (CARB) have tighter emission regulations coming in 2024 and 2027. The Cummins X15N will be certified to not only meet these emission requirements, but to exceed them as well, ensuring compliance for years to come. 

In summary, natural gas engines can help fleets lower their total transportation emission and slower operating costs without major disruptions to their day-to-day operations or mission profile. Moreover, natural gas, as a fuel, has a key role to play in our renewable future.  

Never miss the latest and stay ahead. Sign-up below to receive the latest in technologies, products, industry news, and more. 

 

Puneet Singh Jhawar

Puneet Singh Jhawar

Puneet Singh Jhawar is the General Manager of the global natural gas business for Cummins Inc. In this role, he is responsible for the product vision, financial management and overall performance of the natural gas business. Over his 14-year career at Cummins, Jhawar has cultivated successful relationships with a number of Cummins' largest customers. Jhawar has extensive global experience, with roles based in the Middle East, India, Europe and the US.

STEM Project Unites Children in the UK and Uzbekistan

Zoom call with West Park School and the Children's Home

If you ever doubted the ability of young minds to grasp what many adults would consider complex concepts, then you'll be amazed by the achievements of two groups of young children - one in a school in northern England, and the other 4,000 miles away in an orphanage in Uzbekistan.

With the support of Cummins, children ranging from six to twelve years of age have managed to bridge the language, culture, and time divide. They are collaborating with great success on building a basic electric racing car.

The story begins with a visit by Cummins to Rudmash Export Service, which has been representing Cummins in Tashkent, the capital of Uzbekistan, since 2018.

Rudmash has an impressive list of clients in mining, construction, gas, and power generation.

It is also a highly respected supporter of community initiatives, a key focus for Cummins.

During the visit, Amit Kumar, Cummins' Technical Territory Manager for the Commonwealth of Independent States (CIS) region, mentioned the work he was doing with local schools involving the Greenpower Education Trust in the UK.

Amit suggested that Rudmash might consider introducing local children to the fantastic learning opportunity that comes from building an electric car.

The Rudmash executive team loved the idea and reached out to their friends at the local orphanage (Children’s Home 22), about the proposed connection with children from West Park Academy – a primary school near Cummins' manufacturing plant in Darlington, England.

Students at the Children's Home working on the car
The children from Children's Home 22 building the car

Speaking through a translator, Rudmash Sales Manager Mr. Mavlonberdi Akhmedov said there was no hesitation from the orphanage. "Everyone was excited about it," he said. "When we showed them pictures of the car, the children's eyes lit up with interest.

"The only issue we encountered was not being able to involve the older children, but I think Amit has something in his mind for them. It will involve a similar collaboration with a UK school on a larger electric car that they can fit in!"

Over in Darlington, teacher Mr. David Fraser and his group of 9 to 11-year-olds were thrilled at the prospect of working with children from another country.

Students from West Park Academy
The children from West Park Academy

"Before our first session, I showed the children a map of Uzbekistan and explained how the time zones worked," Mr. Fraser said. "Tashkent is four hours ahead of us."

"When they started hearing a different language, they were a little hesitant although still excited. However, towards the end, once they got used to the translation pauses, lots of questions were being asked."

"They adapted very quickly, and every session with the orphanage has become more engaging. The children have greatly benefited from the relationship. It's been a great learning experience."

The car involved in the project is called the Greenpower Goblin G2. It comes as a flat-pack kit including chassis, wheels, steering, disc brakes, a 24V electric motor, and two 12V batteries.

Students at West Park Academy working on the car
The children from West Park Academy building the car

"The project is all about inspiring young children to take an interest in engineering in a fun and innovative way," said Amit Kumar, who earlier this year received special recognition at the North-East England STEM (Science, Technology, Engineering, and Mathematics) Awards for his years of dedication to STEM Education.

"The build introduces children to basic mechanics and electronics and might be the first step on the pathway to a career in engineering or another STEM field.

Mr. Fraser said the children soon started discussing aspects of the car such as frames, brakes, and steering geometry. There was a lively question-and-answer session on different materials that could be used to design and make the car's body. Their last session was about controls and driving.

"There are also other general discussions, as the children are eager to learn more about each other's countries," said Amit, who leads the sessions.

Students at the Children's Home looking at the car drawing
The children from Children's Home 22 talking about a drawing while on a zoom call

Rudmash service engineer Mr. Abdullayev Shakhzod said the children were enjoying the experience of working in teams.

"It's a fantastic new chapter in the history of a place that has a storied past. It was established in 1942 during the Second World War to care for evacuees from all over Eastern Europe. Children of over 40 different nationalities have been cared for by this children's home.

"The home is named Antonina Pavlovna Khlebushkina after the woman who ran it in the early days. She would be so proud of what is happening there today.

"As the summer vacation times differ in the two countries, the West Park school children have already finished building their cars, while the Uzbekistan car is about 40% complete.

"When the children return from their summer camp in September, they will start the rear axle, motor, and electrical components. Then they can take it for a drive," Amit said.

"Just before their summer term ended, the West Park children conducted a demonstration for their new friends in Tashkent. They set up a track and showcased driving the car on it. It was a great success."

Mr. Akhmedov, speaking through a translator, mentioned that the management team at Rudmash was considering how the project could expand beyond the children's home and into schools and youth organizations throughout Uzbekistan.

Mr. Akhmedov praised Cummins for their support of the project. "They have shown great responsibility at every stage and been very proactive, always striving to ensure things are done right.

"This is just the beginning for these children. It's already motivating them to learn more and develop their skills in broader technical applications.

"I would say that this project is not only important for the children's home but also for our city of Tashkent and the Republic of Uzbekistan, as it is nurturing an educational culture that is highly valuable. I can't thank Amit and Cummins enough."

Amit expressed that it's a privilege to help Cummins inspire young people about engineering and science from an early age.

How is the United States investing in clean energy?

GR hero

Our planet is facing a dire crisis: carbon dioxide concentrations in the atmosphere continue to soar above record highs. If gone unaddressed, the collective stress of climate change will produce an irreparable impact. Our health, energy, water, and food ecosystems are at risk. 

As it stands, there are many long-term effects of climate change. In North America, climate change is forecasted to cause decreasing snowpack in the western mountains. It will also lead to a 5–20% increase in yields of rain-fed agriculture and great intensity of heat waves. In fact, over the last five years, the United States has incurred roughly $120 billion a year in damages as a result of natural disasters caused by extreme weather and climate events.

Beyond natural catastrophes, climatic risks to the United States will have a cascading effect on the country's interconnected ecosystems. Reduced labor and overall economic productivity, and altered crop yields, will disproportionately harm lower-income and marginalized populations. These groups lack the resources to prepare or cope with extreme weather and climate events.

The world is investing in clean energy innovation

Combating the intensifying climate crisis requires a strategic combination of research and development (R&D), innovation, technology — and bold attempts.

Around the globe, countries are investing in clean energy to contribute to a livable planet now and for generations to come. In 2022, the US passed the Inflation Reduction Act, which includes a historic $370 billion investment to address the climate crisis. The Inflation Reduction Act provides tax credits and incentives to power homes, businesses, and communities with clean energy by 2030. The Act will increase investments in the fastest-growing power generation technologies, solar and wind. It will also advance cost-saving clean energy projects and protect two million acres of national forests. These initiatives are in addition to substantial tax credits and rebates offered to families and businesses in the United States.
Consequently, a stronger clean energy economy will contribute to overall economic growth and competition. As a result, there will be millions of new well-paying jobs for Americans to make clean energy.

It is possible to start decarbonizing now

Governmental policy strategies and investments in decarbonization technologies are part of the solution to produce increasingly cheap, dependable, and clean energy.

Strong communities and vibrant economies depend on a healthier planet. As a global power technology leader, Cummins is in a unique position to power customer success by leading during this energy transition. We intent to do so by providing customers with the right technology at the right time, understanding of their needs and applications.

We think of this journey to carbon neutrality in two distinct and complementary ways. First, by innovating zero-emission solutions and introducing them in markets and applications where the infrastructure, development and deployment are ready. Secondly, by advancing internal combustion engines through efficiency improvement and by running them on cleaner alternative fuels for a well-to-wheels solution.

Through Destination Zero, we are advancing low- and no-carbon platforms. This includes diesel and natural gas engines, hybrid, and electric platforms, as well as powertrain components, controls, and related technologies.

Join Cummins in powering a better tomorrow

Cummins environmental sustainability strategy includes goals timed for 2030. Progress toward the reduction of carbon emissions from company plants and facilities — in addition to our products — is in full swing. For more than one hundred years, we have brought technological solutions to market. As a power solutions leader, we will continue to power a more prosperous world for today and tomorrow. Are you ready to consider investing in new power solutions?

Traci Kraus headshot

Traci Kraus

Traci Kraus is a Director of Government Relations where she leads US federal advocacy for Cummins. She focuses on energy, climate, hydrogen, transportation and budget legislative and regulatory issues. 

Prior to joining Cummins, Traci worked for former U.S. Senator Russ Feingold.  She has a Master's in Public Administration from the George Washington University and B.A.s in Government and Politics and Communication from the University of Maryland in College Park. She is originally from Chicago, and now lives outside of Washington, D.C. with her husband, Aaron and two children Liam (8) and Sloane (5).

Redirigir a
cummins.com

La información que busca está en
cummins.com

Estamos lanzando ese sitio para usted ahora.

Gracias.